

1	Atmospheric Evolution of Emissions from a Boreal Forest Fire: The Formation of Highly-
2	Functionalized Oxygen-, Nitrogen-, and Sulfur-Containing Compounds
3	
4	Jenna C. Ditto ¹ , Megan He ¹ , Tori N. Hass-Mitchell ¹ , Samar G. Moussa ² , Katherine Hayden ² ,
5	Shao-Meng Li ² , John Liggio ² , Amy Leithead ² , Patrick Lee ² , Michael J. Wheeler ² ,
6	Jeremy J.B. Wenztell ² , Drew R. Gentner ^{1,3,*}
7	
8	¹ Department of Chemical and Environmental Engineering, Yale University, New Haven, CT,
9	06511, USA; ² Air Quality Research Division, Environment and Climate Change Canada,
10	Toronto, Ontario M3H 5T4, Canada; ³ Solutions for Energy, Air, Climate and Health
11	(SEARCH), School of the Environment, Yale University, New Haven CT 0651, USA
12	
13	* Correspondence to: <u>drew.gentner@yale.edu</u>
14	
15	Abstract
16	Forest fires are major contributors of reactive gas- and particle-phase organic compounds
17	to the atmosphere. We used offline high resolution tandem mass spectrometry to perform a
18	molecular-level speciation of evolving gas- and particle-phase compounds sampled via aircraft
19	from a boreal forest fire in Saskatchewan, Canada. We observed diverse multifunctional
20	compounds containing oxygen, nitrogen, and sulfur (CHONS), whose structure, formation, and
21	impacts are understudied. The abundance of particle-phase CHONS species increased with
22	plume age, from 19% to 40% of the relative abundance of observed functionalized OA over the
23	first 4 hours of downwind transport. The relative contribution of particle-phase sulfide functional

24	groups increased with age from 4% to 40% of observed OA abundance, and were present in up
25	to 75% of CHONS compounds. The increases in sulfides were accompanied by increases in ring-
26	bound nitrogen, and both increased together with CHONS prevalence. A complex mixture of
27	intermediate- and semi-volatile gas-phase organic sulfur species was emitted from the fire and
28	depleted downwind, representing potential precursors to particle-phase CHONS compounds.
29	These results demonstrate CHONS formation from nitrogen/oxygen-containing biomass burning
30	emissions in the presence of reduced sulfur species, and highlight chemical pathways that may
31	also be relevant in situations with elevated levels of nitrogen and sulfur emissions from
32	residential biomass burning and fossil fuel use (e.g. coal), respectively.
33	
34	1 Introduction
35	Forest fires are predicted to become increasingly prevalent and severe with climate
36	change (Abatzoglou and Williams, 2016; Barbero et al., 2015; Jolly et al., 2015). These fires are
37	an important and uncontrolled source of gas- and particle-phase compounds to the atmosphere,
38	including a complex mixture of gas-phase reactive organic carbon, primary organic aerosol
39	(POA), carbon monoxide, carbon dioxide, methane, ammonia, nitrogen oxides, and black carbon
40	(Akagi et al., 2011; Gilman et al., 2015; Hatch et al., 2015, 2018; Koss et al., 2018; Vicente et
41	al., 2013; Yokelson et al., 2013). Many of these emitted compounds are precursors to downwind
42	ozone and secondary organic aerosol (SOA) production (Ahern et al., 2019; Buysse et al., 2019;
43	Gilman et al., 2015; Hennigan et al., 2011; Lim et al., 2019).
44	Primary and secondary pollutants from biomass burning have important effects on air
45	quality locally, regionally, and continentally (Burgos et al., 2018; Colarco et al., 2004; Cottle et
46	al., 2014; Dreessen et al., 2016; Forster et al., 2001; Rogers et al., 2020; Val Martín et al., 2006),

47	and their impacts on human health and climate (e.g. via light absorbing brown and black carbon)
48	have been well documented (Forrister et al., 2015; Jiang et al., 2019; Liu et al., 2017; Di Lorenzo
49	et al., 2018; Reid et al., 2016; Sengupta et al., 2018; Wong et al., 2019). These health and climate
50	effects are sensitive to the elemental and structural composition of gas- and particle-phase
51	emissions and transformation products (Ditto et al., 2019; Hallquist et al., 2009; Nozière et al.,
52	2015). As a result, past studies have used online and offline mass spectrometry techniques to
53	characterize the chemical composition of fresh and aged biomass burning smoke and have
54	revealed a wide array of emitted hydrocarbons and oxygen-, nitrogen-, or sulfur-containing
55	functionalized species (Ahern et al., 2019; Bertrand et al., 2018; Gilman et al., 2015; Hatch et al.,
56	2015, 2018, 2019; Iinuma et al., 2010; Koss et al., 2018; Laskin et al., 2009; Yokelson et al.,
57	2013). However, the emissions and chemical transformations occurring in ambient biomass
58	burning plumes are extremely complex and despite previous measurements remain poorly
59	understood at the molecular-level.
60	In this study, we used an aircraft sampling system developed to collect offline gas- and
61	particle-phase organic compounds from a boreal forest fire. We examined the molecular-level
62	emissions and evolution of the forest fire plume with an unprecedented analysis of offline
63	aircraft samples using gas and liquid chromatography (GC/LC) with high resolution mass
64	spectrometry (MS), including tandem mass spectrometry (MS/MS). This degree of detailed
65	chemical speciation is important to advance knowledge of in-plume chemical pathways and
66	reaction products, long-distance transport, and fate of biomass burning products-all of which
67	will improve modeling capabilities and our understanding of the health and environmental
68	impacts of biomass burning smoke.

69	Specifically, the goals of this study were: (1) to perform a detailed speciation of gas- and
70	particle-phase organic compounds derived from the boreal forest fire in terms of elemental and
71	functional group composition, to assess changes in plume composition at the molecular-level as
72	the plume aged; and (2) to examine the evolution of oxygen-, nitrogen-, and sulfur-containing
73	(CHONS) compounds. These CHONS compounds made up 19-40% of functionalized organic
74	aerosol here and have been observed at other ambient sites (e.g. 9-11% (Ditto et al., 2018)),
75	though little is known about their structures or formation mechanisms. Using our observations of
76	gas-phase sulfur species, we also identified possible precursors and reaction pathways involved
77	in the formation of these CHONS compounds.
78	
79	2 Materials and Methods
80	On June 25th, 2018, two aircraft research flights were conducted by Environment and
81	Climate Change Canada as part of their Air Pollution research program. These flights sampled
82	two boreal forest wildfire smoke plumes originating near Lac LaLoche in northern
83	Saskatchewan, Canada (Figure S1). The region is dominated by pine and spruce trees (Canada's
84	National Forest Inventory, 2020). Gas- and particle-phase samples were collected from the
85	National Research Council of Canada's Convair-580 research aircraft for analysis with offline
86	high resolution mass spectrometry, alongside many other measurements (Supporting Information
87	S1-S2). The aircraft flew the same straight line tracks at multiple altitudes through the smoke
88	plumes, which when stacked created a virtual screen intercepting the plumes, at each of five
89	downwind locations (flight design similar to those previously reported (Li et al., 2017; Liggio et
90	al., 2016)); screen 1 was ~10 km from the fire with screens 2-4 following the plumes downwind,
91	and screen 5 intercepting the plumes after they had passed over several major surface and in-situ

92	mining oil sands facilities (Figure S1). The samples discussed here were collected across both
93	plumes to ensure that enough mass was present to surpass the mass spectrometer's detection
94	limit. Based on satellite information and aircraft measurements at the start of sampling (i.e.
95	screen 1), the fire was a low-intensity surface fire with smoldering conditions; aircraft
96	measurements indicated a modified combustion efficiency of 0.90±0.40 for both plumes.
97	Combined gas- and particle-phase samples were collected onto custom adsorbent tubes
98	packed with high-purity quartz wool, glass beads, Tenax TA, and Carbopack X (Sheu et al.,
99	2018). Samples were collected along screens 1-4 in Figure S1 (no adsorbent tubes collected at
100	screen 5) via an external pod mounted under the wing of the aircraft which included remote
101	switching between adsorbent tubes at various transect altitudes and online measurements of
102	temperature, pressure, and flow (Supporting Information S1, Figure S2). While particles were
103	not explicitly filtered out (to reduce losses of lower volatility gases onto upstream surfaces), we
104	assumed that the compounds measured in the adsorbent tubes below C_{22} - C_{23} were primarily in
105	the gas-phase based on (1) significant undersampling for particles at the adsorbent tube inlet,
106	since the adsorbent tube sampling flow rate was a factor of ~4 lower than its corresponding
107	isokinetic flow rate, resulting in a significant divergence of particles away from the inlet during
108	sampling; (2) partitioning theory and average in-plume organic aerosol (OA) concentrations of
109	18-22 μ g/m ³ across adsorbent tube sampling periods for screens 1-4 (concurrently measured by
110	an aerosol mass spectrometer (AMS) onboard the aircraft, Supporting Information S1, S3, Table
111	S2). As such, we limited the following adsorbent tube data analysis to compounds in the C_{10} - C_{25}
112	range to focus on intermediate-volatility and semivolatile (I/SVOCs) compounds predominantly
113	in the gas-phase.

114	Dedicated particle-phase samples were collected on 47 mm PTFE filters (2.0 µm pore;
115	Pall Corporation) from a sampling manifold in the cabin containing six independent anodized
116	aluminum filter holders. The filters were sampled behind an isokinetic inlet with a size cutoff of
117	approximately 2.5 μ m. One filter sample was collected per screen for screens 1-5 shown in
118	Figure S1.
119	All adsorbent tubes were analyzed using a GERSTEL Thermal Desorber TD 3.5+ with
120	gas chromatography (Agilent 7890B GC), atmospheric pressure chemical ionization (APCI), and
121	quadrupole time-of-flight mass spectrometry (Agilent 6550 Q-TOF), similar to past work (Khare
122	et al., 2019). For adsorbent tubes, the APCI was operated in positive ionization mode. The Q-
123	TOF was operated in MS mode (i.e. TOF data collection, hereafter "GC-APCI-MS"). Adsorbent
124	tube data were processed primarily via a targeted approach for C_xH_y , $C_xH_yO_1$, and $C_xH_yS_1$
125	compounds using custom Igor Pro code (Supporting Information S2-S3).
126	Filter samples were extracted in methanol (Ditto et al., 2018). Samples were analyzed via
127	liquid chromatography (Agilent 1260 LC) with electrospray ionization (ESI) and the same Q-
128	TOF. For filters, the ESI source was operated in both positive and negative ionization mode, and
129	the Q-TOF was operated in both MS mode (i.e. TOF data collection, "LC-ESI-MS") and MS/MS
130	mode (i.e. tandem mass spectral data collection, "LC-ESI-MS/MS") (Ditto et al., 2018, 2020).
131	Filter extracts were also analyzed using GC-APCI-MS in positive ionization mode. Filter data
132	from LC-ESI-MS, LC-ESI-MS/MS, and GC-APCI-MS were analyzed with a non-targeted
133	approach, using Agilent Mass Hunter, SIRIUS with CSI:FingerID, and custom R code
134	(Supporting Information S2-S3) (Ditto et al., 2018, 2020). All peaks that passed strict QC/QA
135	were assigned molecular formulas, with candidate formulas limited to 20 oxygen, 3 nitrogen,
136	and/or 1 sulfur atom(s). Note that these compound classes are discussed here without subscripts.

- Additional details on these methods, including an analysis of total mass analyzed from
 filters and adsorbent tubes, are discussed in Supporting Information S1-S5, with a methods
- 139 summary in Figure S3.

140

141 **3** Results and Discussion

142 <u>3.1 Evolution of organic aerosol elemental composition and functionality with plume age</u>

143 Our analysis of functionalized OA showed several compositional trends in the evolving 144 boreal forest fire smoke plume (screens 1-4) and exhibited marked changes after emissions from 145 the oil sands facilities were mixed with the forest fire plume (screen 5). Here, we focused on the 146 forest fire plume in screens 1-4. We observed a diverse elemental composition in functionalized 147 OA across oxygen-, nitrogen-, and/or sulfur-containing compound classes (Figure 1A-1B, Figure 148 S5). This included compounds containing oxygen (CHO), such as common biomass burning 149 tracers and their isomers (e.g. levoglucosan, Supporting Information S2); as well as oxygen- and 150 nitrogen- containing compounds (CHON); oxygen- and sulfur-containing compounds (CHOS); 151 reduced nitrogen-containing compounds (CHN); reduced nitrogen- and sulfur-containing 152 compounds (CHNS); as well as compounds containing oxygen, nitrogen, and sulfur (CHONS). 153 There was a continual decrease in the relative abundance of particle-phase CHO 154 compounds in measured functionalized OA across screens 1-4, accompanied by a consistent 155 relative increase in CHON and CHONS compounds (Figure 1B). Notably, the relative abundance 156 of CHONS compounds increased from 19 to 40% of measured functionalized OA abundance from screens 1-4. These trends were similar in the carbon monoxide-normalized abundance of 157 158 these compound classes (Figure S5C), where CHO generally decreased from screens 1-4, while 159 CHONS and CHON generally increased, suggesting that CHONS compounds were possibly

160	formed from CHO, CHN, and/or CHON precursors existing across both gas- and particle-phases
161	in the plume (proposed chemistry discussed in Section 3.5). From MS/MS, these evolving CHO,
162	CHN, CHON, and CHONS compounds were often comprised of variable combinations of
163	hydroxyls, ethers (e.g. primary emissions from forest fires like methoxyphenols and similar
164	structures), amines, imines, cyclic nitrogen features (consistent with past laboratory observations
165	of biomass burning emissions (Laskin et al., 2009; Lin et al., 2018; Liu et al., 2015; Updyke et
166	al., 2012)), and sulfides.
167	
168	3.2 Detailed speciation of CHONS compounds in functionalized OA
169	While some individual CHONS functional groups contained grouped oxygen, nitrogen,
170	and sulfur atoms (e.g. sulfonamides), the majority of CHONS compounds had a combination of
171	multiple separate oxygen-, nitrogen-, and/or sulfur-containing functional groups (Figure 2A-2B).
172	Sulfide groups were important contributors to CHONS compounds (Figure 2B) and showed a
173	notable increase in relative contribution to the overall functional group distribution, from 4-40%
174	of measured compound abundance across screens 1-4 (Figure 1C). Their increasing relative
175	contribution to CHONS compounds with plume evolution was even more pronounced-by
176	screen 4, the sulfide functional group was present in 75% of detected CHONS compound
177	abundance (Figure S7A). Here, we focused on the presence of sulfides in CHONS compounds
178	because most of the observed particle-phase sulfides occurred as part of CHONS species (71%),
179	while a smaller fraction occurred as CHOS (21%) or CHNS (8%) (Figure 3A).
180	To explore possible precursors and formation pathways for these particle-phase sulfide-
181	containing CHONS species, we used MS/MS to identify nitrogen-containing functional groups
182	that co-occurred with sulfides. In CHONS compounds, most sulfides co-occurred with cyclic

183	nitrogen (36%), amine (32%), or imine features (43%) (Figure 3B). The prevalence of sulfide
184	and cyclic nitrogen features in the measured functionalized OA increased together screen-to-
185	screen, and increased together with the rising proportion of CHONS compounds (Figure 3C).
186	While sulfides often co-occurred with amines or imines and while amines and imines were
187	prevalent in all 4 screens (Figure 1C), there was no relationship between amines or imines and
188	the increasing contribution of CHONS compounds to measured functionalized OA (Figure S7B).
189	The sulfide substructures observed via MS/MS often contained linear carbon chains or
190	phenyl groups bonded to the sulfur atom (Figure 3C inset). Thus, we hypothesize that precursors
191	with similar reduced sulfur-containing structures reacted with cyclic nitrogen-containing species
192	to form the observed sulfide-containing CHONS compounds, which increased in prevalence with
193	plume age (precursors discussed in Section 3.3, potential chemical pathways discussed in Section
194	3.5).
195	CHONS compounds were predominantly SVOCs in screens 1-4 (i.e. 89% of CHONS ion
196	abundance, Figure 2C, Figure S8), suggesting that these compounds were formed from lighter
197	gas-phase species. In contrast, with the influence of the oil sands facilities in screen 5, 68% of

198 CHONS compounds were extremely low volatility organic compounds (ELVOCs), though

199 CHONS made up only 2% of functionalized OA at screen 5. CO-normalized abundances of

200 functionalized OA in each particle-phase volatility bin (i.e. IVOC, SVOC, LVOC, ELVOC,

201 computed using LC-derived molecular formulas with the Li et al. parameterization (Li et al.,

202 2016)) increased with plume age, but the relative contribution of SVOCs increased from 37% to

- 203 58% while the relative contribution of IVOCs dropped from 38% to 20%, potentially due to
- 204 oxidation reactions that formed SVOCs and/or due to evaporation (Figure S9). These particle-
- 205 phase IVOCs consisted predominantly of CHO, CHN, and CHON (O/N < 3) compounds, which

206	are possible non-sulfur containing precursors to the observed CHONS species. Fragmentation of
207	particle-phase L/ELVOC compounds also could have contributed to some of the observed SVOC
208	mass, but the increasing total abundance across all volatility bins with plume age supports the
209	idea that these compounds were predominantly formed from more volatile precursors (e.g.
210	I/SVOCs).
211	
212	3.3 Targeted search for CHONS precursors in the gas-phase
213	To investigate possible gas-phase I/SVOC precursors to the observed sulfide-containing
214	CHONS compounds, we performed a targeted search for each adsorbent tube sample across all
215	C_{10} - C_{25} $C_xH_yS_1$ species with the equivalent of 0-15 double bonds and/or rings (i.e. $C_xH_{2x+2}S_1$ -
216	$C_xH_{2x-28}S_1$, Figure 4A, Figure S10). We observed a distribution of $C_xH_yS_1$ compounds and their
217	isomers; based on the high mass resolution and high mass accuracy molecular formulas from
218	targeted GC-APCI-MS analysis, 27% of $C_xH_yS_1$ compounds were fully saturated (i.e. $C_xH_{2x+2}S_1$)
219	and 25% contained the equivalent of 4-6 double bonds and/or rings (i.e. $C_xH_{2x-6}S_1$ - $C_xH_{2x-10}S_1$),
220	which included single ring aromatics. We focused on these sulfur-containing gases as candidate
221	precursors to the observed sulfide-containing CHONS compounds as they contained sulfur
222	substructures with linear carbon chains or phenyl groups, similar to those observed on CHONS
223	compounds via MS/MS OA analysis (Figure 3C inset, Figures S10-S11). However, we also
224	observed contributions from other sulfur-containing structures (e.g. with the equivalent of 1-3
225	double bonds and/or rings, in Figure 4A), which could also be involved as precursors.
226	The observed gas-phase C_{10} - $C_{25}C_xH_yS_1$ compounds were emitted by the fire and likely
227	also evaporated from the particle-phase during early plume dilution. Gas-phase C_{10} - $C_{25}C_xH_yS_1$
228	concentrations increased relative to carbon monoxide from screen 1 to 2, then steadily decreased

- 229 with plume age (Figure 4B, Figure S12A). This suggests the emission and/or evaporation of
- 230 C_xH_yS₁ compounds between screens 1 and 2, and subsequent participation in plume chemistry
- from screens 2 to 4.
- 232 Similar OA evaporation with plume dilution has been observed in many past studies
- 233 (Ahern et al., 2019; Garofalo et al., 2019; Hennigan et al., 2011; Lim et al., 2019). However, to
- 234 better understand the dynamics of these sulfur-containing compounds, we compared their
- 235 concentrations to concentrations from a targeted search of adsorbent tube gas-phase compounds
- that included C10-C25 aliphatic and aromatic CxHy and CxHyO1 species. Overall, CxHy and CxHyO1
- compound classes dominated the observed C₁₀-C₂₅ compounds (Figure 4B, Figure S12B), with
- 238 $61\% C_x H_y$, $36\% C_x H_y O_1$, and just $3\% C_x H_y S_1$ on average. $C_x H_y$ and $C_x H_y O_1$ concentrations
- 239 generally increased with plume age (Figure 4B) and included many known compound types (e.g.
- 240 monoterpenes, aromatics, hydroxyls, carbonyls (Akagi et al., 2011; Andreae, 2019; Gilman et al.,
- 241 2015; Hatch et al., 2015, 2019; Koss et al., 2018)). This suggests the direct emission of these
- 242 gas-phase compounds from the fire (observed at screen 1) and evaporation from the particle-
- 243 phase as the plume evolved, as well as formation of $C_xH_yO_1$ via oxidation of C_xH_y compounds.
- 244 AMS measurements of total OA concentrations provided supporting evidence of OA
- evaporation; the ratio of AMS OA concentration to CO decreased by 7% from screen 1 to 2
- 246 (corresponding to an AMS OA/CO ratio of -0.0044 or a decrease in OA concentration of -2.3
- $\mu g/m^3$), while the ratio of total gas-phase C_xH_y, C_xH_yO₁, and C_xH_yS₁ concentration to CO
- 248 increased by 55% (corresponding to a total gas-phase concentration/CO ratio of 0.022 or an
- increase in gas-phase concentration of 7.0 μ g/m³, Table S3). While not the focus of the analytical
- approaches applied in this study, to further substantiate the observation of OA evaporation, we
- 251 performed the same targeted analysis of C10-C25 CxHy, CxHyO1, and CxHyS1 compounds in the

252	particle-phase filter sample extracts analyzed via GC-APCI-MS and observed a similar decrease
253	in concentration from screen 1 to 2. However, these filter measurements (even with APCI
254	ionization) were not geared towards C_xH_y and $C_xH_yS_1$ measurements due to possible solubility
255	limitations in the extraction solvent (Supporting Information S4). Direct thermal desorption of
256	adsorbent tubes or filters with APCI ionization would be better suited for these C_xH_y and $C_xH_yS_1$
257	measurements (as performed in this study with adsorbent tubes).
258	Also, as discussed in Materials and Methods, the observed semivolatile compounds
259	below ~C22-C23 existed primarily in the gas-phase, while larger compounds actively partitioned
260	to and equilibrated with the particle-phase, further corroborating the possibility of contributions
261	from both direct gas-phase emissions and gases from OA evaporation (Supporting Information
262	S3, Table S2). In contrast to C_xH_y concentrations, $C_xH_yS_1$ concentrations dropped markedly after
263	screen 2 despite similarities in the volatility distribution of C_xH_y and $C_xH_yS_1$ I/SVOCs in their
264	respective complex mixtures (Figure 4A, Figures S10 and S13). This difference shows that the
265	observed C _x H _y S ₁ I/SVOCs were removed (possibly by chemical reactivity) relatively more
266	rapidly than C _x H _y , thus supporting their potential contribution to CHONS formation.
267	In addition to the C_{10} - C_{25} C_x H _y S ₁ compounds measured in the adsorbent tubes, smaller
268	sulfur-containing compounds could have also acted as CHONS precursors, like those identified
269	by the onboard proton transfer reaction-mass spectrometer (PTR-ToF-MS). While dimethyl
270	sulfide (DMS, previously observed in biomass burning smoke (Andreae, 2019)) was often below
271	its instrument limit of detection, both dimethyl and diethyl sulfide showed good correlation with
272	acetonitrile, a well-known biomass burning product (Andreae, 2019), in the smoke plume during
273	screen 1 (r ~ 0.95, Figure S12C). This suggests that these compounds were co-emitted by the fire
274	(Akagi et al., 2011; Andreae, 2019; Hatch et al., 2015; Koss et al., 2018).

275 <u>3.4 Investigating possible origins of gas-phase sulfur compounds</u>

276	The gas-phase sulfur-containing compounds observed in the plume were emitted from the
277	smoldering fire. However, their origins are uncertain, since the broader range of sulfur species
278	found here (Figure 4A, Figures S10-11) has not yet been reported; many of the compounds in the
279	complex sulfur-containing mixture measured here were outside the detection range or
280	measurement capability of previously employed methods (Hatch et al., 2015; Khare et al., 2019;
281	Koss et al., 2018; Sekimoto et al., 2018). Here, we explore two potential origins of these gas-
282	phase sulfur-containing precursors to the observed particle-phase CHONS compounds: the
283	biomass fuel itself and the deposition of sulfur species from anthropogenic/industrial operations.
284	Fuel: In past studies, emissions of sulfur-containing organic compounds were typically
285	minor compared to-oxygen- or nitrogen-containing compounds, and the relative balance of
286	oxygen-, nitrogen-, or sulfur-containing compound emissions was typically proportional to fuel
287	content (Hatch et al., 2015; Ward, 1990). The estimated N:S ratio for boreal forest fuel near the
288	fire was ~10:1 (Huang and Schoenau, 1996), which was similar to the average N:S ratio from a
289	non-targeted search for nitrogen- and sulfur-containing I/SVOCs from the adsorbent tube
290	samples in this study of (8.1 ± 4.8) :1. Sulfur is an essential nutrient in plants, and can be taken up
291	from soil (as sulfate) or from the atmosphere via deposition (as SO ₂ and sulfate) (Aas et al.,
292	2019; Gahan and Schmalenberger, 2014; Leustek, 2002). Both SO ₂ and sulfate are metabolized
293	in plants to yield a variety of compounds critical to plant functions including cysteine and a
294	range of other sulfur- (and oxygen- and nitrogen-) containing compounds (Leustek, 2002). In
295	addition, disulfide bonds contribute to plant protein structure, and these bonds are known to
296	cleave and form thiols (Gahan and Schmalenberger, 2014; Leustek, 2002; Onda, 2013). Sulfur-
297	containing compounds like these may have been emitted during the fire, along with other known

sulfur products from boreal fuels (e.g. DMS, thiophenes (Akagi et al., 2011; Hatch et al., 2015;

299 Koss et al., 2018; Landis et al., 2018)).

300 Deposition: While sulfur can be naturally occurring (e.g. Leustek, 2002), it is also 301 associated with anthropogenic activities (e.g. transportation, power generation, industry, etc.). 302 This implies that a portion of the sulfur in the forest fire emissions could have originated from 303 sulfur deposited via such anthropogenic activities. The closest large anthropogenic sulfur source 304 to the fire location was the oil sands mining region north of Fort McMurray, Alberta, which was 305 approximately 150 km away and which contained known SO₂ emitters (Liggio et al., 2017; 306 McLinden et al., 2016). Regional concentrations of SO₂ or other sulfur species from these nearby 307 industrial activities could have led to accumulated deposition of inorganic and/or organic sulfur 308 compounds over time, though it is uncertain how much of this deposited sulfur would have been 309 taken up and transformed by vegetation (vs. accumulated) due to sulfur uptake and assimilation 310 regulatory pathways in plants (Davidian and Kopriva, 2010). This possible accumulated 311 deposition may have acted as a reservoir of sulfur to be emitted during fires via the re-312 volatilization of deposited compounds, in addition to the evaporation of typical sulfur 313 metabolites or the formation of sulfur-containing combustion by-products. This hypothesis is 314 consistent with recent deposition measurement and modelling results for the region, which 315 indicated that sulfur deposition from the oil sands potentially impacted areas downwind, 316 including the region where this fire occurred (Makar et al., 2018). Interestingly, lichen and 317 spruce trees, which are prominent in the region of the fire discussed here, have been reported to 318 accumulate sulfur from SO₂ in regions near large industrial SO₂ sources (Meng et al., 1995; 319 Nyborg et al., 1991). Also, past studies have reported enhancements in sulfate (as well as nitrate 320 and ammonium) aerosols from biomass burning in areas with urban influence (Fenn et al., 2015;

321	Hecobian et al., 2011; Hegg et al., 1987). Inorganic aerosol components from both urban (e.g.:
322	Edmonton, Alberta) and industrial (e.g. oil sands) sources could deposit in the area surrounding
323	the emissions source along with an organic phase, which we postulate could contain a range of
324	sulfur-containing species including the C _x H _y S ₁ compounds shown here. However, further work is
325	needed to disentangle the contribution of natural vs. anthropogenic sulfur to functionalized OA
326	from biomass burning.
327	
328	3.5 Potential reaction pathways leading to sulfides in CHONS from sulfur precursors
329	A number of potential reactions involving sulfur-containing precursors, often thiols (R-
330	SH), may have contributed to the formation of the observed sulfide functional groups in particle-
331	phase CHONS compounds (Figure S14). On average, our gas-phase measurements showed a
332	27% contribution of fully saturated sulfur-containing hydrocarbons (i.e. $C_xH_{2x+2}S_1$, Figures S10-
333	11). It is likely that some fraction of the sulfur compounds observed in the gas-phase adsorbent
334	tube measurements (e.g. the compounds identified as $C_xH_{2x+2}S_1$) and in PTR-ToF-MS
335	measurements (e.g. dimethyl sulfide, diethyl sulfide) were thiols, but the distinction between
336	sulfide and thiol isomers was challenging without specific internal standards.
337	In some of the following possible reactions, a thiol interacts with a non-sulfur precursor
338	to yield a sulfide-containing compound. The non-sulfur precursor (in the gas- or particle-phase)
339	may have contained O and N atoms, thus yielding a CHONS compound immediately after
340	participating in one of the proposed reactions. Alternatively, the newly formed sulfide-containing
341	compound may have undergone subsequent, separate reactions with CHO, CHN, and/or CHON
342	compounds (in the gas- or particle-phase) to form the observed sulfide-containing CHONS
343	species. Here, we focused on possible reactions that could have contributed the sulfide group to

344	these oxygen- and/or nitrogen-containing compounds (known emissions from forest fires, as
345	discussed above). Earlier, we postulated that because most of the observed CHONS compounds
346	were SVOCs, these compounds were predominantly formed by reactions of more volatile gas-
347	phase I/SVOCs, and thus we examined potential gas-phase precursors in the C10-C25 range.
348	However, it is uncertain whether these sulfide-forming and CHONS-forming reactions occurred
349	in the gas-phase with subsequent partitioning to the particle-phase, heterogeneously, or in a
350	combination of separate gas- and particle-phase chemistry. We suggest some possible sulfide-
351	forming reactions here, yet we note that these proposed reactions are likely not comprehensive.
352	Further work to elucidate the chemistry driving this sulfide and CHONS formation is needed.
353	Some possible reactions include: (1) thiol-ene reactions, where a thiol reacts with an
354	alkene (or alkyne), which can form carbon-sulfur bonds (Lowe, 2010). Alkenes are known to be
355	prominent in emissions from boreal fires (Gilman et al., 2015; Hatch et al., 2015), and we
356	observed similar structures in our gas-phase samples that likely included alkenes, cyclic alkanes,
357	and/or monoterpenes (Figure S13). (2) Thiol reactions with carbonyls, which can form
358	hemithioacetals that subsequently dehydrate in the atmosphere to yield sulfides (Jencks and
359	Lienhard, 1966). This reaction is similar to the formation of enamines from carbonyls and
360	dimethyl amine via the formation and subsequent dehydration of a carbinolamine, which has
361	been shown to occur in ambient conditions (Duporté et al., 2016, 2017). (3) Thiol reactions with
362	alcohols, which can form sulfides. These reaction rates are low in the absence of catalysts and
363	require relatively high temperature to occur (i.e. 200-450°C; temperatures that are relevant very
364	close to the fire but unlikely in the rapidly cooling plume (Mashkina, 1991)). (4) Another
365	possibility is that a radical intermediate product formed during atmospheric oxidation of DMS
366	(e.g. the methylthiomethyl radical (CH ₃ SCH ₂ [•]) from OH [•] -driven hydrogen abstraction of DMS

367	(Barnes et al., 2006)) interacted with CHN and CHON precursors to yield the observed sulfide-
368	containing CHONS products. However, the concentrations of the methylthiomethyl radical and
369	similar radicals from other small sulfide precursors would likely be lower than those of other
370	major drivers of in-plume radical chemistry (e.g. O2, NOx, etc.), thus making this reaction
371	pathway less likely to contribute.
372	Based on our observations of these sulfide-containing products across flight screens, the
373	overall timescales for these sulfide-forming reactions was likely approximately 1 hour (or less).
374	For the literature reactions referenced above, reaction timescales ranged from minutes to hours in
375	laboratory experiments, but extrapolation to timescales in an ambient smoke plume is uncertain.
376	Specifically, it is challenging to compare to predicted timescales for the proposed reactions
377	without knowing the exact structure/identities of the reactants or the possible role of other key
378	modifying factors in the smoke plume (e.g. aerosol pH, presence of water).
379	
380	4 Implications & Conclusions
381	In this work, we performed the first high resolution tandem mass spectrometry analysis of
382	an evolving smoke plume from a smoldering boreal forest fire. The results show clear evidence
383	of gas-phase sulfur-containing emissions from the fire, and an increasing contribution from
384	particle-phase CHONS compounds with sulfide functional groups as the plume evolved.
385	Together, these results suggest the emission of gas-phase sulfur-containing compounds from the
385 386	Together, these results suggest the emission of gas-phase sulfur-containing compounds from the fire and subsequent gas- and/or particle-phase chemistry that produced multifunctional sulfide-

389 urban inland (1-7% sulfides), urban coastal (5-12% sulfides), and remote forested (7% sulfides),

390	and on average, sulfides comprised 28% of sulfur-containing functional groups at these sites
391	(Ditto et al., 2020). However, in past work, 53% of these sulfides were present in CHOS
392	compounds, while 34% were CHONS, and 13% were CHNS (in contrast to 21%, 71%, and 8%
393	in this study, respectively). Notably, at a Northeastern U.S. coastal site where there were several
394	pollution events linked to long distance transport of biomass burning smoke during field
395	sampling (Rogers et al., 2020), 70-90% of sulfides were present in CHONS compounds (Ditto et
396	al., 2020), similar to the distribution of sulfides discussed here (Figure 3A).
397	These results, along with past observations, highlight that this type of chemistry and these
398	types of reaction products may be relevant to other regions where concentrations of nitrogen and
399	sulfur-containing precursors are high, such as in developing regions, emerging economies, or
400	megacities where residential biomass burning is common and coincident with extensive use of
401	sulfur-containing fossil fuels (e.g. coal). CHONS compounds have been reported in similar
402	regions in past studies (Lin et al., 2012; Pan et al., 2013; Song et al., 2019; Wang et al., 2017a,
403	2016, 2017b). Their formation is potentially important since the presence of sulfur (including in
404	sulfide functional groups), oxygen, and nitrogen can affect the glass transition temperature and
405	thus the phase state (e.g. solid, semi-solid, liquid), as well as the mixing state (e.g. well-mixed,
406	phase-separated) of particles (DeRieux et al., 2018; Ditto et al., 2019; Van Krevelen and Te
407	Nijenhuis, 2009). These physical properties may influence particles' chemical reactivity and thus
408	persistence in the atmosphere, along with their transport and deposition, all of which contribute
409	to the health and environmental impacts that communities and ecosystems experience from OA
410	exposure. Future work to identify prominent functional groups in CHONS species in regions
411	with high CHONS concentrations will help elucidate the formation chemistry of these
412	functionalized compounds, and understand and mitigate their associated impacts.

413 Acknowledgments

- 414 The authors acknowledge GERSTEL for their collaboration with the TDU 3.5+, used to run the
- 415 adsorbent tubes discussed in this study. We thank Environment and Climate Change Canada and
- 416 National Research Council technical teams for their help in the construction and maintenance of
- 417 cartridge sampling systems, specifically Tak Chan (Environment and Climate Change Canada)
- 418 for help collecting samples. We also thank Jo Machesky (Yale) for help running adsorbent tube
- 419 samples, Joe Lybik (Yale) for help packing adsorbent tubes, and Daniel Thompson (Natural
- 420 Resources Canada) for informative discussion. J.C.D., M.H., T.H-M., and D.R.G. acknowledge
- 421 support from National Science Foundation grant AWD0001666. We also acknowledge funding
- 422 from the Air Pollution (AP) program of Environment and Climate Change Canada. The flights
- 423 discussed in this study were embedded within a 2018 oil sands monitoring intensive campaign,
- 424 and the oil sands monitoring program is acknowledged for enabling the flights.

425

426 Author Contributions

- 427 J.C.D. ran samples, processed filter data, compiled and interpreted results. M.H. processed
- 428 adsorbent tube data. T.H-M. contributed to MS/MS analysis. S.G.M., K.H., J.L., and D.R.G.
- 429 collaborated on data interpretation. K.H. collected and processed AMS data. A.L. collected and
- 430 processed PTR-ToF-MS data. S.-M.L. designed the aircraft adsorbent tube collection system.
- 431 P.L. and J.J.B.W. implemented the wing pod design. P.L. prepared the wing pods for collection
- 432 and J.J.B.W. and J.L. collected the adsorbent tube samples. M.J.W. and J.L. designed the filter
- 433 collection system. M.J.W. and K.H collected filter samples. S.-M.L., K.H., and J.L. designed the
- 434 aircraft sampling study. J.C.D. and D.R.G. wrote the manuscript, with input from all co-authors.

436	Competing Interests
437	The authors declare that they have no conflict of interest.
438	
439	Code and Data Availability
440	Code and data are available upon request.
441	
442	References
443	Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z.,
444	Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K.,
445	Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., Stein, A., Takemura, T.,
446	Tsyro, S., Vet, R. and Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep.,
447	9(1), 1–11, doi:10.1038/s41598-018-37304-0, 2019.
448	Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire
449	across western US forests, Proc. Natl. Acad. Sci. U. S. A., 113(42), 11770-11775,
450	doi:10.1073/pnas.1607171113, 2016.
451	Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E., Barsanti, K. C., Stockwell,
452	C. E., Yokelson, R. J., Presto, A. A., Robinson, A. L., Sullivan, R. C. and Donahue, N.
453	M.: Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke
454	From Fresh Fuels and Its Relationship to VOC Precursors, J. Geophys. Res. Atmos.,
455	124(6), 3583-3606, doi:10.1029/2018JD029068, 2019.
456	Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J.
457	D. and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use
458	in atmospheric models, Atmos. Chem. Phys., 11(9), 4039-4072, doi:10.5194/acp-11-

459	4039-2011, 2011.
460	Andreae, M. O.: Emission of trace gases and aerosols from biomass burning - An updated
461	assessment, Atmos. Chem. Phys., 1-27, doi:10.5194/acp-2019-303, 2019.
462	Canada's National Forest Inventory, [online] Available from: https://nfi.nfis.org/en/ (Accessed
463	18 February 2020), 2020.
464	Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. and Stocks, B.: Climate change
465	presents increased potential for very large fires in the contiguous United States, Int. J.
466	Wildl. Fire, 24(7), 892–899, doi:10.1071/WF15083, 2015.
467	Barnes, I., Hjorth, J. and Mihalapoulos, N.: Dimethyl sulfide and dimethyl sulfoxide and their
468	oxidation in the atmosphere, Chem. Rev., 106(3), 940–975, doi:10.1021/cr020529+,
469	2006.
470	Bertrand, A., Stefenelli, G., Jen, C. N., Pieber, S. M., Bruns, E. A., Ni, H., Temime-Roussel, B.,
471	Slowik, J. G., Goldstein, A. H., Haddad, I. El, Baltensperger, U., Prévôt, A. S. H.,
472	Wortham, H. and Marchand, N.: Evolution of the chemical fingerprint of biomass
473	burning organic aerosol during aging, Atmos. Chem. Phys., 18(10), 7607-7624,
474	doi:10.5194/acp-18-7607-2018, 2018.
475	Burgos, M. A., Mateos, D., Cachorro, V. E., Toledano, C., de Frutos, A. M., Calle, A.,
476	Herguedas, A. and Marcos, J. L.: An analysis of high fine aerosol loading episodes in
477	north-central Spain in the summer 2013 - Impact of Canadian biomass burning episode
478	and local emissions, Atmos. Environ., doi:10.1016/j.atmosenv.2018.04.024, 2018.
479	Buysse, C. E., Kaulfus, A., Nair, U. and Jaffe, D. A.: Relationships between Particulate Matter,
480	Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US, Environ.
481	Sci. Technol., 53(21), 12519–12528, doi:10.1021/acs.est.9b05241, 2019.

- 482 Colarco, P. R., Schoeberl, M. R., Doddridge, B. G., Marufu, L. T., Torres, O. and Welton, E. J.:
- 483 Transport of smoke from Canadian forest fires to the surface near Washington, D.C.:
- 484 Injection height, entrainment, and optical properties, J. Geophys. Res. D Atmos., 109(6),
- 485 1–12, doi:10.1029/2003JD004248, 2004.
- 486 Cottle, P., Strawbridge, K. and McKendry, I.: Long-range transport of Siberian wildfire smoke to
- 487 British Columbia: Lidar observations and air quality impacts, Atmos. Environ.,
- 488 doi:10.1016/j.atmosenv.2014.03.005, 2014.
- Davidian, J.-C. and Kopriva, S.: Regulation of Sulfate Uptake and Assimilation—the Same or
 Not the Same?, Mol. Plant, 3(2), 314–325, doi:10.1093/MP/SSQ001, 2010.
- 491 DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A. and
- 492 Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary
- 493 organic material using molecular composition, Atmos. Chem. Phys., 18(9), 6331–6351,
- 494 doi:10.5194/acp-18-6331-2018, 2018.
- 495 Ditto, J. C., Barnes, E. B., Khare, P., Takeuchi, M., Joo, T., Bui, A. A. T., Lee-Taylor, J., Eris,
- 496 G., Chen, Y., Aumont, B., Jimenez, J. L., Ng, N. L., Griffin, R. J. and Gentner, D. R.: An
- 497 omnipresent diversity and variability in the chemical composition of atmospheric
- 498 functionalized organic aerosol, Commun. Chem., 1(1), 75, doi:10.1038/s42004-018-
- 499 0074-3, 2018.
- 500 Ditto, J. C., Joo, T., Khare, P., Sheu, R., Takeuchi, M., Chen, Y., Xu, W., Bui, A. A. T., Sun, Y.,
- 501 Ng, N. L. and Gentner, D. R.: Effects of Molecular-Level Compositional Variability in
- 502 Organic Aerosol on Phase State and Thermodynamic Mixing Behavior, Environ. Sci.
- 503 Technol., 53, 13009–13018, doi:10.1021/acs.est.9b02664, 2019.
- 504 Ditto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L. and Gentner, D. R.: Nontargeted

- 505 Tandem Mass Spectrometry Analysis Reveals Diversity and Variability in Aerosol
- 506 Functional Groups across Multiple Sites, Seasons, and Times of Day, Environ. Sci.
- 507 Technol. Lett., 7(2), 60–69, doi:10.1021/acs.estlett.9b00702, 2020.
- 508 Donahue, N. M., Epstein, S. A., Pandis, S. N. and Robinson, A. L.: A two-dimensional volatility
- basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11(7), 3303–
- 510 3318, doi:10.5194/acp-11-3303-2011, 2011.
- 511 Dreessen, J., Sullivan, J. and Delgado, R.: Observations and impacts of transported Canadian
- 512 wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12,
- 513 2015, J. Air Waste Manag. Assoc., 66(9), 842–862,
- 514 doi:10.1080/10962247.2016.1161674, 2016.
- 515 Duporté, G., Parshintsev, J., Barreira, L. M. F., Hartonen, K., Kulmala, M. and Riekkola, M. L.:
- 516 Nitrogen-Containing Low Volatile Compounds from Pinonaldehyde-Dimethylamine
- 517 Reaction in the Atmosphere: A Laboratory and Field Study, Environ. Sci. Technol.,

518 50(9), 4693–4700, doi:10.1021/acs.est.6b00270, 2016.

- 519 Duporté, G., Riva, M., Parshintsev, J., Heikkinen, E., Barreira, L. M. F., Myllys, N., Heikkinen,
- 520 L., Hartonen, K., Kulmala, M., Ehn, M. and Riekkola, M. L.: Chemical Characterization
- 521 of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of
- 522 Dimethylamine, Environ. Sci. Technol., 51(10), 5602–5610,
- 523 doi:10.1021/acs.est.6b06231, 2017.
- 524 Fenn, M. E., Bytnerowicz, A., Schilling, S. L. and Ross, C. S.: Atmospheric deposition of
- 525 nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region,
- 526 Alberta, Canada, Environ. Pollut., 196, 497–510, doi:10.1016/j.envpol.2014.08.023,
- 527 2015.

- 528 Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L., Anderson, B., Diskin,
- 529 G., Perring, A. E., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Palm, B. P., Jimenez,
- 530 J. L., Nenes, A. and Weber, R. J.: Evolution of brown carbon in wildfire plumes,
- 531 Geophys. Res. Lett., 42, 4623–4630, 2015.
- 532 Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D., Simmonds, P.,
- 533 O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider, J., Trickl, T., Kreipl, S., Jäger, H.
- and Stohl, A.: Transport of boreal forest fire emissions from Canada to Europe, J.
- 535 Geophys. Res. Atmos., 106(D19), 22887–22906, doi:10.1029/2001JD900115, 2001.
- 536 Gahan, J. and Schmalenberger, A.: The role of bacteria and mycorrhiza in plant sulfur supply,

537 Front. Plant Sci., 5(DEC), 1–7, doi:10.3389/fpls.2014.00723, 2014.

- 538 Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M. and Farmer, D.
- 539 K.: Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in
- 540 the Western United States, ACS Earth Sp. Chem., 3(7), 1237–1247,
- 541 doi:10.1021/acsearthspacechem.9b00125, 2019.
- 542 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J.
- 543 M., De Gouw, J. A., Burling, I. R. and Yokelson, R. J.: Biomass burning emissions and
- 544 potential air quality impacts of volatile organic compounds and other trace gases from
- 545 fuels common in the US, Atmos. Chem. Phys., 15(24), 13915–13938, doi:10.5194/acp-
- 546 15-13915-2015, 2015.
- 547 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,
- 548 J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H.,
- 549 Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A.,
- 550 Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J.

- 551 H., Surratt, J. D., Szmigielski, R. and Wildt, J.: The formation, properties and impact of
- secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9(14),
- 553 5155–5236, doi:10.5194/acp-9-5155-2009, 2009.
- Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E. and Barsanti, K. C.:
- 555 Identification and quantification of gaseous organic compounds emitted from biomass
- burning using two-dimensional gas chromatography-time-of-flight mass spectrometry,

557 Atmos. Chem. Phys., 15(4), 1865–1899, doi:10.5194/acp-15-1865-2015, 2015.

- 558 Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H. and Barsanti, K. C.:
- 559 Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks
- and two-dimensional gas chromatography, Atmos. Chem. Phys., 18(24), 17801–17817,
- 561 doi:10.5194/acp-18-17801-2018, 2018.
- 562 Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., York, R.
- 563 A., Foster, D., Stephens, S. L., Goldstein, A. H. and Barsanti, K. C.: Highly Speciated
- 564 Measurements of Terpenoids Emitted from Laboratory and Mixed-Conifer Forest

565 Prescribed Fires, Environ. Sci. Technol., 53(16), 9418–9428,

- 566 doi:10.1021/acs.est.9b02612, 2019.
- 567 Hecobian, A., Liu, Z., Hennigan, C. J., Huey, L. G., Jimenez, J. L., Cubison, M. J., Vay, S.,
- 568 Diskin, G. S., Sachse, G. W., Wisthaler, A., Mikoviny, T., Weinheimer, A. J., Liao, J.,
- 569 Knapp, D. J., Wennberg, P. O., Kürten, A., Crounse, J. D., St. Clair, J., Wang, Y. and
- 570 Weber, R. J.: Comparison of chemical characteristics of 495 biomass burning plumes
- 571 intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field
- 572 campaign, Atmos. Chem. Phys., 11(24), 13325–13337, doi:10.5194/acp-11-13325-2011,
- 573 2011.

575 The Burning of Forest Products Near Large Urban Areas, J. Geophys. Res., 92, 701–71	74	Hegg, D. A., Radke, L. F., Hobbs, P. V. and Brock, C. A.: Nitrogen and Sulfur Emissions From
	75	The Burning of Forest Products Near Large Urban Areas, J. Geophys. Res., 92, 701–714,

- 576 1987.
- 577 Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan,
- 578 A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W. M., Gilman, J. B., Kuster, W.
- 579 C., De Gouw, J., Schichtel, B. A., Collett, J. L., Kreidenweis, S. M. and Robinson, A. L.:
- 580 Chemical and physical transformations of organic aerosol from the photo-oxidation of
- 581 open biomass burning emissions in an environmental chamber, Atmos. Chem. Phys.,

582 11(15), 7669–7686, doi:10.5194/acp-11-7669-2011, 2011.

- 583 Huang, W. Z. and Schoenau, J. J.: Forms, amounts and distribution of carbon, nitrogen,
- 584 phosphorus and sulfur in a boreal aspen forest soil, Can. J. Soil Sci., 76(3), 373–385,
- 585 doi:10.4141/cjss96-045, 1996.
- 586 Iinuma, Y., Böge, O. and Herrmann, H.: Methyl-nitrocatechols: Atmospheric tracer compounds
- 587 for biomass burning secondary organic aerosols, Environ. Sci. Technol., 44(22), 8453–
- 588 8459, doi:10.1021/es102938a, 2010.
- 589 Jencks, W. P. and Lienhard, G. E.: Thiol Addition to the Carbonyl Group. Equilibria and
- 590 Kinetics, J. Am. Chem. Soc., 88(17), 3982–3995, doi:10.1021/ja00969a017, 1966.
- 591 Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R. and Lin, Y. H.: Brown
- 592 Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile
- 593 Organic Compounds, Environ. Sci. Technol. Lett., 6(3), 184–190,
- 594 doi:10.1021/acs.estlett.9b00017, 2019.
- Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J.
- 596 and Bowman, D. M. J. S.: Climate-induced variations in global wildfire danger from

- 597 1979 to 2013, Nat. Commun., 6(May), 1–11, doi:10.1038/ncomms8537, 2015.
- 598 Khare, P., Marcotte, A., Sheu, R., Walsh, A. N., Ditto, J. C. and Gentner, D. R.: Advances in
- 599 offline approaches for trace measurements of complex organic compound mixtures via
- soft ionization and high-resolution tandem mass spectrometry, J. Chromatogr. A, 1598,
- 601 163–174, doi:10.1016/j.chroma.2019.03.037, 2019.
- 602 Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan,
- B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke,
- 604 C., Yokelson, R. J. and De Gouw, J.: Non-methane organic gas emissions from biomass
- 605 burning: Identification, quantification, and emission factors from PTR-ToF during the
- 606 FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18(5), 3299–3319,
- 607 doi:10.5194/acp-18-3299-2018, 2018.
- 608 Van Krevelen, D. W. and Te Nijenhuis, K.: Properties of Polymers, 4th ed., Elsevier,
- 609 Amsterdam., 2009.
- 610 Landis, M. S., Edgerton, E. S., White, E. M., Wentworth, G. R., Sullivan, A. P. and Dillner, A.
- 611 M.: The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air
- 612 pollution levels in the Athabasca Oil Sands Region, Alberta, Canada, Sci. Total Environ.,
- 613 618, 1665–1676, doi:10.1016/j.scitotenv.2017.10.008, 2018.
- 614 Laskin, A., Smith, J. S. and Laskin, J.: Molecular Characterization of Nitrogen-Containing
- 615 Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass
- 616 Spectrometry, Environ. Sci. Technol., 43(10), 3764–3771, doi:10.1021/es803456n, 2009.
- 617 Leustek, T.: Sulfate Metabolism, Arab. B., 1(e0017), 1–16, doi:10.1199/tab.0017, 2002.
- 618 Li, S. M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D., Hayden, K.,
- 619 Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud, C. A., McLaren, R., Liu,

- 620 P. S. K., O'Brien, J., Mittermeier, R. L., Zhang, J., Marson, G., Cober, S. G., Wolde, M.
- 621 and Wentzell, J. J. B.: Differences between measured and reported volatile organic
- 622 compound emissions from oil sands facilities in Alberta, Canada, Proc. Natl. Acad. Sci.
- 623 U. S. A., 114(19), E3756–E3765, doi:10.1073/pnas.1617862114, 2017.
- 624 Li, Y., Pöschl, U. and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in
- 625 the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16(5), 3327–3344,
- 626 doi:10.5194/acp-16-3327-2016, 2016.
- 627 Liggio, J., Li, S.-M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A., Drollette, B. D.,
- 628 Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G., Wang, D., O'Brien, J.,
- 629 Mittermeier, R. L., Brook, J. R., Lu, G., Staebler, R. M., Han, Y., Tokarek, T. W.,
- 630 Osthoff, H. D., Makar, P. A., Zhang, J., Plata, D. L. and Gentner, D. R.: Oil sands
- 631 operations as a large source of secondary organic aerosols, Nature, 534,
- 632 doi:10.1038/nature17646, 2016.
- 633 Liggio, J., Moussa, S. G., Wentzell, J., Darlington, A., Liu, P., Leithead, A., Hayden, K.,
- 634 O'Brien, J., Mittermeier, R. L., Staebler, R., Wolde, M. and Li, S.-M.: Understanding the
- 635 primary emissions and secondary formation of gaseous organic acids in the oil sands
- 636 region of Alberta, Canada, Atmos. Chem. Phys., 17(13), 8411–8427, doi:10.5194/acp-17-
- 637 8411-2017, 2017.
- 638 Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., De Gouw, J., Warneke,
- 639 C., Cappa, C. D. and Kroll, J. H.: Secondary organic aerosol formation from the
- laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19(19), 12797–
- 641 12809, doi:10.5194/acp-19-12797-2019, 2019.
- 642 Lin, P., Yu, J. Z., Engling, G. and Kalberer, M.: Organosulfates in humic-like substance fraction

- 643 isolated from aerosols at seven locations in East Asia: A study by ultra-high-resolution
- 644 mass spectrometry, Environ. Sci. Technol., 46(24), 13118–13127,
- 645 doi:10.1021/es303570v, 2012.
- 646 Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J. and Laskin, A.: Comprehensive Molecular
- 647 Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry
- 648 with Electrospray and Atmospheric Pressure Photoionization, Anal. Chem., 90(21),
- 649 12493–12502, doi:10.1021/acs.analchem.8b02177, 2018.
- 650 Liu, J. C., Wilson, A., Mickley, L. J., Dominici, F., Ebisu, K., Wang, Y., Sulprizio, M. P., Peng,
- 651 R. D., Yue, X., Son, J.-Y., Anderson, G. B. and Bell, M. L.: Wildfire-specific Fine
- 652 Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties,

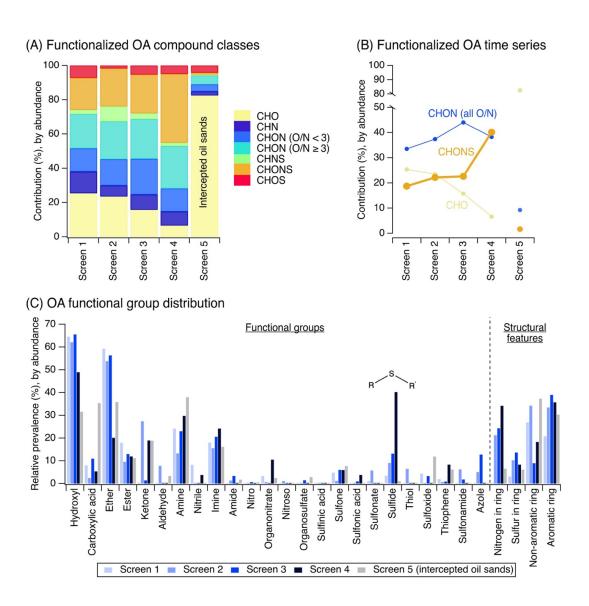
653 Epidemiology, 28(1), 77–85, doi:10.1111/mec.13536.Application, 2017.

- Liu, Y., Liggio, J. and Staebler, R.: Reactive uptake of ammonia to secondary organic aerosols:
- 655 Kinetics of organonitrogen formation, Atmos. Chem. Phys., 15(23), 13569–13584,
- 656 doi:10.5194/acp-15-13569-2015, 2015.
- 657 Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C. and Young, C. J.: Composition of Size-
- 658 Resolved Aged Boreal Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and
- 659 Reduced Nitrogen, ACS Earth Sp. Chem., 2(3), 278–285,
- 660 doi:10.1021/acsearthspacechem.7b00137, 2018.
- 661 Lowe, A. B.: Thiol-ene "click" reactions and recent applications in polymer and materials
- 662 synthesis, Polym. Chem., 1(1), 17–36, doi:10.1039/b9py00216b, 2010.
- Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y. A., Zhang, J., Wong, I.,
- 664 Hayden, K., Li, S. M., Kirk, J., Scott, K., Moran, M. D., Robichaud, A., Cathcart, H.,
- 665 Baratzedah, P., Pabla, B., Cheung, P., Zheng, Q. and Jeffries, D. S.: Estimates of

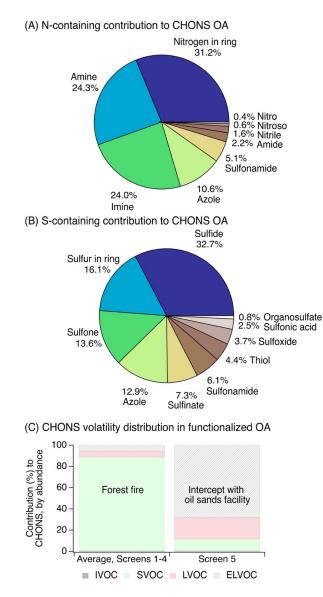
666	exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan,
667	Atmos. Chem. Phys., 18(13), 9897–9927, doi:10.5194/acp-18-9897-2018, 2018.
668	Mashkina, A. V.: Catalytic Synthesis Of Sulfides Sulfoxides and Sulfones, Sulfur reports, 10(4),
669	279-388, doi:10.1080/01961779108048759, 1991.
670	McLinden, C. A., Fioletov, V., Krotkov, N. A., Li, C., Boersma, K. F. and Adams, C.: A Decade
671	of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space, Environ.
672	Sci. Technol., 50(1), 331-337, doi:10.1021/acs.est.5b04985, 2016.
673	Meng, F. R., Bourque, C. P. A., Belczewski, R. F., Whitney, N. J. and Arp, P. A.: Foliage
674	responses of spruce trees to long-term low-grade sulfur dioxide deposition, Environ.
675	Pollut., 90(2), 143–152, doi:10.1016/0269-7491(94)00101-I, 1995.
676	Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius,
677	M., Grgić, I., Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C.
678	J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt,
679	J. D., Szidat, S., Szmigielski, R. and Wisthaler, A.: The Molecular Identification of
680	Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev.,
681	115(10), 3919–3983, doi:10.1021/cr5003485, 2015.
682	Nyborg, M., Solberg, E. D., Malhi, S. S., Takyi, S., Yeung, P. and Chaudhry, M.: Deposition of
683	anthropogenic sulphur dioxide on soils and resulting soil acidification, Plant-Soil Interact.
684	Low pH, 147–156, doi:10.1007/978-94-011-3438-5_16, 1991.
685	Onda, Y.: Oxidative protein-folding systems in plant cells, Int. J. Cell Biol., 2013,
686	doi:10.1155/2013/585431, 2013.
687	Pan, Y. P., Wang, Y. S., Tang, G. Q. and Wu, D.: Spatial distribution and temporal variations of
688	atmospheric sulfur deposition in Northern China: Insights into the potential acidification

- risks, Atmos. Chem. Phys., 13(3), 1675–1688, doi:10.5194/acp-13-1675-2013, 2013.
- 690 Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R. and Elliott, C. T.: Critical
- 691 review of health impacts of wildfire smoke exposure, Environ. Health Perspect., 124(9),
- 692 1334–1343, doi:10.1289/ehp.1409277, 2016.
- 693 Rogers, H. M., Ditto, J. C. and Gentner, D. R.: Evidence for impacts on surface-level air quality
- 694 in the northeastern US from long-distance transport of smoke from North American fires
- 695 during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018, Atmos. Chem.
- 696 Phys., 20(2), 671–682, doi:10.5194/acp-20-671-2020, 2020.
- 697 Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan,
- B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M. and De
- 699 Gouw, J.: High-and low-temperature pyrolysis profiles describe volatile organic
- 700 compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18(13),
- 701 9263–9281, doi:10.5194/acp-18-9263-2018, 2018.
- 702 Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts,
- A., Moosmüller, H. and Khlystov, A.: Light absorption by polar and non-polar aerosol
- compounds from laboratory biomass combustion, Atmos. Chem. Phys., 18(15), 10849–
- 705 10867, doi:10.5194/acp-18-10849-2018, 2018.
- 506 Sheu, R., Marcotte, A., Khare, P., Charan, S., Ditto, J. C. and Gentner, D. R.: Advances in
- 707 offline approaches for chemically speciated measurements of trace gas-phase organic
- 708 compounds via adsorbent tubes in an integrated sampling-to-analysis system, J.
- 709 Chromatogr. A, 1575, 80–90, doi:10.1016/j.chroma.2018.09.014, 2018.
- 710 Song, J., Li, M., Fan, X., Zou, C., Zhu, M., Jiang, B., Yu, Z., Jia, W., Liao, Y. and Peng, P.:
- 711 Molecular Characterization of Water- And Methanol-Soluble Organic Compounds

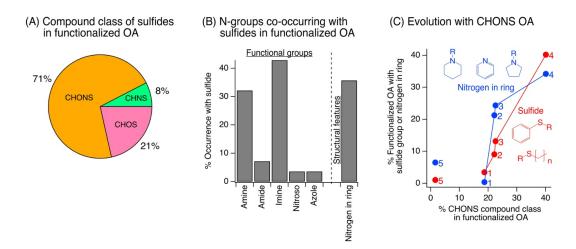
712	Emitted from Residential Coal Combustion Using Ultrahigh-Resolution Electrospray
713	Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci.
714	Technol., 53(23), 13607–13617, doi:10.1021/acs.est.9b04331, 2019.
715	Updyke, K. M., Nguyen, T. B. and Nizkorodov, S. A.: Formation of brown carbon via reactions
716	of ammonia with secondary organic aerosols from biogenic and anthropogenic
717	precursors, Atmos. Environ., 63, 22-31, doi:10.1016/j.atmosenv.2012.09.012, 2012.
718	Val Martín, M., Honrath, R. E., Owen, R. C., Pfister, G., Fialho, P. and Barata, F.: Significant
719	enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower
720	free troposphere resulting from North American boreal wildfires, J. Geophys. Res.
721	Atmos., 111(23), 1-17, doi:10.1029/2006JD007530, 2006.
722	Vicente, A., Alves, C., Calvo, A. I., Fernandes, A. P., Nunes, T., Monteiro, C., Almeida, S. M.
723	and Pio, C.: Emission factors and detailed chemical composition of smoke particles from
724	the 2010 wildfire season, Atmos. Environ., doi:10.1016/j.atmosenv.2013.01.062, 2013.
725	Wang, X., Wang, H., Jing, H., Wang, W. N., Cui, W., Williams, B. J. and Biswas, P.: Formation
726	of Nitrogen-Containing Organic Aerosol during Combustion of High-Sulfur-Content
727	Coal, Energy and Fuels, 31(12), 14161–14168, doi:10.1021/acs.energyfuels.7b02273,
728	2017a.
729	Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C. and Wang,
730	L.: Molecular characterization of atmospheric particulate organosulfates in three
731	megacities at the middle and lower reaches of the Yangtze River, Atmos. Chem. Phys.,
732	16(4), 2285–2298, doi:10.5194/acp-16-2285-2016, 2016.
733	Wang, X. K., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C., Emmelin, C., Chen,
734	J., George, C. and Wang, L.: Chemical Characteristics of Organic Aerosols in Shanghai:



735	A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass
736	Spectrometry, J. Geophys. Res. Atmos., 122(21), 11,703-11,722,
737	doi:10.1002/2017JD026930, 2017b.
738	Ward, D. E.: Factors Influencing the Emissions of Gases and Particulate Matter from Biomass
739	Burning, in Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, pp.
740	418–436., 1990.
741	Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M.,
742	Sciare, J., Nenes, A. and Weber, R. J.: Effects of Atmospheric Processing on the
743	Oxidative Potential of Biomass Burning Organic Aerosols, Environ. Sci. Technol.,
744	53(12), 6747–6756, doi:10.1021/acs.est.9b01034, 2019.
745	Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., De Gouw, J., Akagi,
746	S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D.
747	W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker, D. R., Jung, H. and Weise, D.
748	R.: Coupling field and laboratory measurements to estimate the emission factors of
749	identified and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13(1),
750	89–116, doi:10.5194/acp-13-89-2013, 2013.

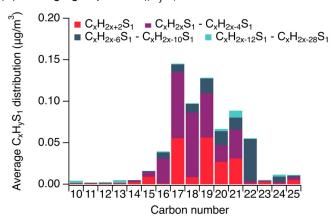


751 Figure 1. (A) The compound class distribution of functionalized OA (from non-targeted LC-752 ESI-MS) weighted by ion abundance, shown as percent contribution of each compound class to 753 the total compound abundance measured by LC-ESI-MS. (B) Percent contribution of CHO, 754 CHON, and CHONS compound classes in functionalized OA as a function of plume age. CHON 755 compounds in panel B are summed across all O/N ratios. (C) Functional groups and structural 756 features present in measured functionalized OA (from non-targeted LC-ESI-MS/MS). The 757 sulfide functional group is shown here for emphasis, and will be the subject of subsequent 758 analyses. For panels A-C, results tabulated by occurrence and absolute ion abundance are shown 759 in Figure S5-S6, and functional group tallying methods are discussed in Supporting Information 760 S3.

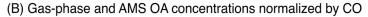


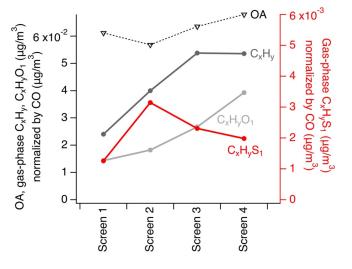
761 Figure 2. (A) The observed particle-phase CHONS compounds included cyclic nitrogen and a 762 range of N-containing functional groups (organonitrates are excluded here due to challenges with 763 their identification using SIRIUS with CSI:FingerID, but contributed minimally to CHONS, 764 Supporting Information S3). (B) These CHONS compounds showed a variety of S-containing 765 functional groups with sulfides being the most prominent. For panels A-B, data are averaged 766 across screens 1-4, with individual screens shown in Figure S7A. (C) The particle-phase CHONS 767 compounds formed in the forest fire plume were mostly SVOCs. These volatility data were 768 averaged across screens 1-4, and individual screens are shown in Figure S8. Volatility was 769 estimated with the parameterization in Li et al. (Li et al., 2016) and grouped according to

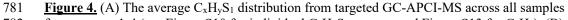
volatility bins in Donahue et al. (Donahue et al., 2011).



771	Figure 3. (A) 71% of sulfide functional groups observed (weighted by ion abundance) were
772	present in CHONS compounds. (B) Sulfides were often paired with amines, imines, and cyclic
773	nitrogen features. Data shown in panels A-B are cumulative across compounds in screens 1-4.
774	(C) The relative contribution of sulfides and cyclic nitrogen groups to all functionalized OA
775	increased together with the increasing contribution of CHONS compounds. The other functional
776	groups shown in panel B showed no relationship with the increase in CHONS (Figure S7B).
777	Structures represent examples of commonly observed sulfide and cyclic nitrogen substructures
778	from SIRIUS and CSI:FingerID (Supporting Information S3), where ring structures associated
779	with nitrogen heteroatoms were free standing, adjacent to other rings, and/or contained additional
780	attached functional groups.


780 attached functional groups.





(A) Average gas-phase $C_xH_vS_1$ distribution

- from screens 1-4 (see Figure S10 for individual $C_xH_yS_1$ screens, and Figure S13 for C_xH_y). (B)
- 783 Concentrations of gas-phase C_xH_y , $C_xH_yO_1$, $C_xH_yS_1$ from targeted GC-APCI-MS, and total OA 784 from AMS, all normalized by carbon monoxide concentration across screens 1-4 (see Figure
- from AMS, all normalized by carbon monoxide concentration across screens 1-4 (see Figure
 S12A for non-normalized concentrations). Data in panel B are averaged over low and high
- altitude adsorbent tube samples.